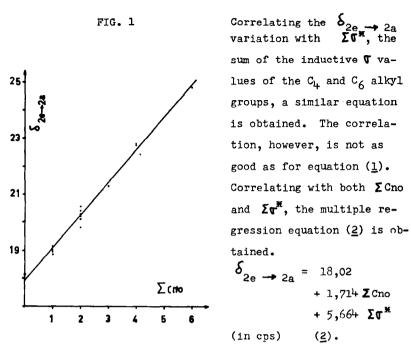
N. M. R. EXPERIMENTS ON KETALS. VIII (1). THE CHEMICAL SHIFT OF THE C₂ PROTONS OF CIS-4,6-DIALKYL-1,3-DIOXANES : A LINEAR RELATION. D. Tavernier (2) and M. Anteunis. Laboratory of Organic Chemistry, State University of Ghent, Ghent - Belgium.

(Received 13 September 1966)

We have measured the chemical shift $\delta_{2e} \rightarrow 2a$ between the equatorial and axial C_2 protons of fifteen cis-4,6-dialkyl-1,3-dioxanes (Table I). The compounds may be accepted to exist in anancomeric (3) chair forms, and thus the observed $\delta_{2e} \rightarrow 2a$ variation is not due to multiple conformation presence.

Correlating the $\delta_{2e} \rightarrow 2a$ variation with Σ Cno, the sum of the number of carbon atoms on the first carbon atom of the C_4 and C_6 alkyl group, equation (1) is obtained by the method of the least squares (4).

 $\delta_{2e} \rightarrow 2a = 17,90 + 1,170 \Sigma Cno$ (in cps) (1) (fig. 1) r = 0,993 (r is the correlation coefficient between $\delta_{2e} \rightarrow 2a$ and Σ Cno) (5)


5851

Cis-4,6-dialkyl-1,3-Dioxanes (56.4 Mc).						
R	^R 6	δ _{2e} → 2a	∑ Cno	Σ ([#] (a)	Frequen equat.	
Me	Me	18.15 ± 0.2	0	0.000	0	0
Me	Et	19.15 - 0.1	l	-0.100	0	1
Me	<u>n</u> .Pr	18.85 [±] 0.1	l	-0.115	0.5	1.3
Me	n.Bu	18 . 95 [±] 0.15	1	-0.130	0.6	1.5
Me	<u>i</u> .Bu	19.00 ± 0.2	1	-0.125	0.5	1.5
Me	<u>i</u> .Pr	20.58 ± 0.2	2	-0.190	-0.8	1.6
Me	<u>sec</u> .Bu	20.1 ± 0.3	2	-0.210	-0.6	1.4
Et	Et	20.144 ± 0.25	2	-0.200	-1.1	1.2
<u>n</u> .Pr	<u>n</u> .Pr	20.2 ± 0.15	2	-0.230	-0.4	1.6
<u>i</u> .Bu	<u>i</u> .Bu	19.8 ± 0.15	2	-0.250	-0.3	1.5
<u>n</u> .Bu	<u>n</u> .Bu	20.3 ± 0.1	2	-0.260	-0.3	2.0
Me	<u>t</u> .Bu	21.20 ± 0.15	3	-0.300	-2.3	0.7
<u>i</u> .Pr	<u>i</u> .Pr	22.30 ± 0.1	4	-0.380	-3.1	1.5
<u>sec</u> .Bu	<u>sec</u> .Bu	22.75 ± 0.2	4	-0. ¹ +10	-2.7	1.9
<u>t</u> .Bu	<u>t</u> .Bu	24.82 ± 0.15	6	-0.600	-5.1	0.5

TABLE I.

 (a) R.M.Taft, Jr., "Steric Effects in Organic Chemistry" N.J. Newman, Ed., John Wiley & Sons, Inc., New York, 1956, p. 619.

(b) Relative to the corresponding frequency of <u>cis</u>+,6-diMe-1,3-dioxane as zero. Negative sign is downfield shift.

R = 0,995 (R is the multiple correlation coefficient) (5). The standard partial regression coefficients learn that Σ Cno has more influence in "explaining" $\delta_{2e} - 2a$ than $\Sigma \sigma^{\pi}$. The proportion of the total sum of squares attributable to Σ Cno alone (eq. <u>1</u>) is $r^2 = 0.98$. On the other hand the proportion of the total sum of squares attributable to the combined regression on Σ Cno and $\Sigma \sigma^{\pi}$ (eq. <u>2</u>) is $R^2 = 0.99$. The gain in "explained" variability on adding $\Sigma \tau^{\pi}$ as a variable, although significant, is so small that, in our opinion, $\Sigma \sigma^{\pi}$ may be neglected as a second variable. The satisfactory correlation between $\delta_{2e \rightarrow 2a}$ and $\Sigma \sigma^{\pi}$ is then only a reflection of the correlation between Σ Cno and $\Sigma \sigma^{\pi}$. Moreover, there are two experimental reasons to prefer Σ Cno over $\Sigma \sigma^{\pi}$ as the significant variable. First it is found that the $\delta_{2e \rightarrow 2a}$ variation is mainly due to a downfield shift of the low field equationial C_2 proton (Table I). If, however, $\Sigma \sigma^{\pi}$ was the important variable, then $\delta_{2e \rightarrow 2a}$ would have changed through increased shielding, resulting in an upfield shift of the C_2 protons. Secondly the $\delta_{2e \rightarrow 2a}$ values of some trans (di-equatorial) 4-aryl-5-methyl-1,3-dioxanes have been reported (6). The aryl groups are phenyl, 3-nitrophenyl, 4-chlorophenyl and 4-methoxyphenyl. The $\delta_{2e \rightarrow 2a}$ value is constant in this series (0.39 ppm) and this militates also against the inductive effect being chemically significant.

Even though these considerations indicate that Σ Cno is the significant variable, it is difficult to provide a theoretical basis for its origin. Recently however a similar phenomenon has been observed in acetates MeCOOR (7). The resonance frequency of the methyl group is influenced not only by the inductive effect of the R group, but also by the number of carbon atoms on the β carbon atom(s) of the group. A steric inhibition of resonance through specific conformation occurrence was advanced as being responsible for the observation (7).

Experimental.

The PMR spectra were run in carbon disulfide solutions (1 mmol in 0,6 ml solvent) on a VARIAN DP 56,4 Mc spectrometer. The temperature was $28^{\circ}C^{+}$ 1.

References.

- (1) Paper VII, Tetr. Letters, 38, 4579 (1966).
- (2) Aspirant of the "Nationaal Fonds voor Wetenschappelijk Onderzoek".
- (3) For a definition of this term, see M. Anteunis, D. Tavernier & F. Borremans, <u>Bull.Soc.Chim.Belges</u> <u>75</u>, 396 (1966).
- (4) Prof. Dr. C. C. Grosjean, Director of the Computing Laboratory of the University of Ghent is thanked for calculations.
- (5) G.W. Snedecor, <u>Statistical Methods</u>, 5th ed. The Iowa State College Press.
- (6) J. Delmau; Thesis (1965) Lyon France.
- (7) O.Rosado-Lojo, C. Kinney Hancock, A. Danti; <u>J.Org.Chem</u>. <u>31</u> 1899 (1966).

Acknowledgement.

The "Fonds voor Collectief Fundamenteel Wetenschappelijk Onderzoek" is thanked for financial aid to the laboratory and the "Nationaal Fonds voor Wetenschappelijk Onderzoek" is thanked for a research grant to one of us (D.T.).